The genetic basis of red and blue coloration in *Betta Splendens*

Lab Meeting February 07, 2020

Debbie Leung Young Mi Kwon

Background

Why study color in *Betta splendens*?

• Ornamental Betta splendens display a wide variety of colors

Background

Why study color in Betta splendens?

• Ornamental *Betta splendens* display a wide variety of colors, but what underlies these colors is unknown

From intechopen

Background

Why study color in *Betta splendens*?

• Ornamental *Betta splendens* display a wide variety of colors, but what underlies these colors is unknown

We are investigating the underlying genetic basis of red-blue coloration in Betta splendens

Methodology: F2 Intercross for QTL Mapping

Parental Species

Х

F1 generation

Х

F2 generation Variation in Genotype

Variation in Color

Experimental Workflow

Generating F2 Intercross

Generating F2 Intercross

Generating F2 Intercross: Body Size

Experimental Workflow

• Why: Get the relative RGB value for hue, saturation and brightness

From Hyperphysics

From Kristoffer Helander

Experimental Setup

Materials:

- LED lights
- Camera
- Photo tank with fish
- White balance (calibration)
- Color matrix (calibration)

• Polarized light gives refraction due to plastic tension

• Polarized light gives refraction due to plastic tension

Before Mirror

Before Mirror

Through Matlab...

1. Label Photos

(Fish vs Background)

2. Calculate Weights based on label proportions

3. Train Network

Split data:

- 1. training set (60%)
- 2. validation set (40%)

4. Mask out any non-Fish pixels

Experimental Workflow

2. Pigment Extraction

- Redness is associated with the abundance of pteridines and carotenoids
- Provide a quantitative measurement of carotenoids (redness)

0.3 x 0.2 cm

Blue Red Fish Fish

HPLC + UV-Vis Spectrophotometer

2. Pigment Extraction

- Protocol:
 - 1. Ground thawed tissue in 2 mL methyl tertiary-butyl ether (MTBE) for 2 minutes.
 - 2. Combine it with the 2 mL extract in a 9 mL falcon tube; rinse eppendorf with 1mL of MTBE.
 - 3. Add 2 mL of 1% $NH_{A}OH$ to the tube
 - 4. Vortex the tube for 1 minute
 - 5. Centrifuge the tube for 5 minutes at 3000 rpm
 - 6. Carotenoids will be partitioned into the top (MTBE) layer and pteridines into the bottom (NH_4OH) layer

Experimental Workflow

3. Spectrometer

- Blueness is likely from iridescence and is structural
- Quantify iridescence (blueness)

Future Directions

- Continue quantifying color of the F2s through photos
- Start pigment extraction
- Start spectrometer
- Genotyping/Sequencing
- QTL Mapping

Thank You!

Bendesky Lab members, especially

- Young Mi
- Pei
- Madison
- Hiroki
- Claire
- Amy

